3.1049 \(\int \frac{(a+b x^2)^p}{x^2} \, dx\)

Optimal. Leaf size=38 \[ -\frac{\left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+\frac{1}{2};\frac{1}{2};-\frac{b x^2}{a}\right )}{a x} \]

[Out]

-(((a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1/2 + p, 1/2, -((b*x^2)/a)])/(a*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0133995, antiderivative size = 47, normalized size of antiderivative = 1.24, number of steps used = 2, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {365, 364} \[ -\frac{\left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b x^2}{a}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^p/x^2,x]

[Out]

-(((a + b*x^2)^p*Hypergeometric2F1[-1/2, -p, 1/2, -((b*x^2)/a)])/(x*(1 + (b*x^2)/a)^p))

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^p}{x^2} \, dx &=\left (\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \frac{\left (1+\frac{b x^2}{a}\right )^p}{x^2} \, dx\\ &=-\frac{\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b x^2}{a}\right )}{x}\\ \end{align*}

Mathematica [A]  time = 0.0060888, size = 47, normalized size = 1.24 \[ -\frac{\left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};-\frac{b x^2}{a}\right )}{x} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^p/x^2,x]

[Out]

-(((a + b*x^2)^p*Hypergeometric2F1[-1/2, -p, 1/2, -((b*x^2)/a)])/(x*(1 + (b*x^2)/a)^p))

________________________________________________________________________________________

Maple [F]  time = 0.029, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( b{x}^{2}+a \right ) ^{p}}{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^p/x^2,x)

[Out]

int((b*x^2+a)^p/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x^2,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{p}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x^2,x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p/x^2, x)

________________________________________________________________________________________

Sympy [C]  time = 4.60555, size = 26, normalized size = 0.68 \begin{align*} - \frac{a^{p}{{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - p \\ \frac{1}{2} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**p/x**2,x)

[Out]

-a**p*hyper((-1/2, -p), (1/2,), b*x**2*exp_polar(I*pi)/a)/x

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{p}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x^2,x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p/x^2, x)